Acquire a deep insight into modern theories of nature using powerful mathematical techniques. Providingyou with the necessary mathematical language to be able to describe, analyse and predict natural phenomena. Lectured by world-leading researchers in theoretical physics, who have strong links to CERN, the European Light Infrastructure, and the UK’s Central Laser Facility. Choose your project modules where you can work with our researchers to explore aspects of modern physics in depth.
Build strong mathematical foundations to support future investigations in theoretical physics. Topics include probability and randomness, which are key ideas in quantum theories, and tools such as group theory, which are used to describe fundamental symmetries in nature. Calculus and analysis plus linear algebra, essential for studying higher dimensional theories are also introduced along with an introduction to programming.In second year you will review the evidence for the existence of dark matter and describe Newtonian cosmology using vector calculus. Acquire the mathematical language of quantum mechanics by learning about real and complex analysis. A case studies module introduces the powerful Monte Carlo technique which lies at the heart of statistical mechanics and is used to extract precision results from the Standard Model of particle physics.An optional, but highly recommended placement provides you with valuable paid professional experience to help make your CV stand out. Typically students are paid around £17,000 and employers have included the Fujitsu, GlaxoSmithKline, Liberty Living, Vauxhall Motors, VirginCare, Visteon and Jagex Games Studio.In your final year the focus is on modern physics and you have a choice of modules. Topics include classical mechanics, quantum mechanics, electrodynamics and special relativity. The mathematical language of the core partial differential equations module is essential. You can conduct a final year theoretical physics project with a supervisor from our theoretical physics research group. Projects have included general relativity and black holes, the gravitational super highway, quantum algorithms, quantum field theory and the quark model.The modules shown for this course or programme are those being studied by current students, or expected new modules. Modules are subject to change depending on year of entry and up to date information can be found on our website.
For up to date details, please refer to our website or contact the institution directly.
Build strong mathematical foundations to support future investigations in theoretical physics. Topics include probability and randomness, which are key ideas in quantum theories, and tools such as group theory, which are used to describe fundamental symmetries in nature. Calculus and analysis plus linear algebra, essential for studying higher dimensional theories are also introduced along with an introduction to programming. In second year you will review the evidence for the existence of dark matter and describe Newtonian cosmology using vector calculus. Acquire the mathematical language of quantum mechanics by learning about real and complex analysis. A case studies module introduces the powerful Monte Carlo technique which lies at the heart of statistical mechanics and is used to extract precision results from the Standard Model of particle physics. An optional, but highly recommended placement provides you with valuable paid professional experience to help make your CV stand out. Typically students are paid around £17,000 and employers have included the Fujitsu, GlaxoSmithKline, Liberty Living, Vauxhall Motors, VirginCare, Visteon and Jagex Games Studio. In your final year the focus is on modern physics and you have a choice of modules. Topics include classical mechanics, quantum mechanics, electrodynamics and special relativity. The mathematical language of the core partial differential equations module is essential. You can conduct a final year theoretical physics project with a supervisor from our theoretical physics research group. Projects have included general relativity and black holes, the gravitational super highway, quantum algorithms, quantum field theory and the quark model. The modules shown for this course or programme are those being studied by current students, or expected new modules. Modules are subject to change depending on year of entry and up to date information can be found on our website.
A local representative of University of Plymouth in Singapore is available online to assist you with enquiries about this course.