This degree integrates mathematics and data science, equipping students with essential skills for real-world problem-solving and extracting insights from large datasets. It covers practical and theoretical aspects, including calculus, probability, machine learning, and algorithms, preparing graduates for diverse careers in industries like finance, retail, and business. Students gain confidence through optional work placements, career development modules, and research projects on topics ranging from medical imaging to AI applications.The three-year program features core modules in years one and two, such as algebra, statistics, and programming, with greater flexibility in year three, including advanced topics like differential equations and stochastic models. Assessment combines exams, coursework, and group projects, with feedback provided within three to four weeks, emphasizing a balanced evaluation across the years.
This three-year BSc Mathematics with Data Science degree is focused on pure mathematics with real applications. As you progress, you will have increasing choice and flexibility about what you choose to study. Year 1 consists of modules that make up 125 credits. All modules are core. -Functions, Vectors and Calculus (30 credits) -Algebra (15 credits) -Linear Algebra (15 credits) -Introduction to Probability and Statistics (15 credits) -Logic and Set Theory (15 credits) -Number Theory and Cryptography (15 credits) -Introduction to Modelling (15 credits) -Skills, Careers and Employability Analysis for Mathematics students (5 credits) Year 2 consists of modules that make up 125 credits. -Programming and Data Science for the Professions (15 credits) -Real and Complex Analysis (30 credits) -Vector Calculus (15 credits) -Sequences and Series (15 credits) -Decision Analysis (15 credits) -Applied Mathematics (15 credits) -Numerical Mathematics (15 credits) -Professional Development and Employability (5 credits) -Applications of Probability and Statistics (15 credits) Year 3 consists of modules that make up 120 credits. -Codes (15 credits) -Techniques for Data Science (15 credits) -Group project (15 credits) -Principles of Data Science (15 credits) Introduction to Artificial Intelligence (15 credits) -Machine Learning (15 credits) -Differential Equations (30 credits) -Advanced Complex Analysis (15 credits) -Stochastic Models (15 credits) -Operational Research (15 credits) -Probability and Statistics 2 (30 credits) -Graph Theory (15 credits) -Game Theory (15 credits) -Dynamical Systems (15 credits) -Introduction to the Mathematics of Fluids (15 credits) -Introduction to Mathematical Physics -Mathematical Processes for Finance (15 credits) -Groups and Symmetry (15 credits) -Mathematical Biology (15 credits)